计算NASH平衡策略是多方面强化学习中的一个核心问题,在理论和实践中都受到广泛关注。但是,到目前为止,可证明的保证金仅限于完全竞争性或合作的场景,或者在大多数实际应用中实现难以满足的强大假设。在这项工作中,我们通过调查Infinite-Horizo​​n \ Emph {对抗性团队Markov Games},这是一场自然而充分动机的游戏,其中一组相同兴奋的玩家 - 在没有任何明确的情况下,这是一个自然而有动机的游戏,这是一场自然而有动机的游戏,而偏离了先前的结果。协调或交流 - 正在与对抗者竞争。这种设置允许对零和马尔可夫潜在游戏进行统一处理,并作为模拟更现实的战略互动的一步,这些互动具有竞争性和合作利益。我们的主要贡献是第一种计算固定$ \ epsilon $ - Approximate Nash Equilibria在对抗性团队马尔可夫游戏中具有计算复杂性的算法,在游戏的所有自然参数中都是多项式的,以及$ 1/\ epsilon $。拟议的算法特别自然和实用,它基于为团队中的每个球员执行独立的政策梯度步骤,并与对手侧面的最佳反应同时;反过来,通过解决精心构造的线性程序来获得对手的政策。我们的分析利用非标准技术来建立具有非convex约束的非线性程序的KKT最佳条件,从而导致对诱导的Lagrange乘数的自然解释。在此过程中,我们大大扩展了冯·斯坦格尔(Von Stengel)和科勒(GEB`97)引起的对抗(正常形式)团队游戏中最佳政策的重要特征。
translated by 谷歌翻译
最近的多人游戏的理论和应用方面的最新进步,从电子运动到多种子体生成的对抗网络,我们专注于团队零和游戏中的最大优化。在这类游戏中,玩家分为两支队伍,在同一支队内等等,对手团队的相反标志。与TextBook二手零和游戏不同,在我们的类中找到纳什均衡可以被证明是CLS-Hard,即,它不太可能具有用于计算NASH均衡的多项式时间算法。此外,在该广义框架中,使用梯度下降上升(GDA),其乐观变体和额外梯度,我们建立了即使是渐近的最后一次迭代或时间平均收敛到纳什均衡。具体来说,我们展示了一个诱导效用是\ emph {non}的团队游戏系列\ \ emph {non}有吸引力的\ {per-se}混合的纳什均衡,作为底层优化景观的严格鞍点。利用控制理论的技术,我们通过设计局部收敛的修改GDA来补充这些负面结果,以纳入均衡。最后,我们讨论了我们的框架与AI架构的联系,其中与多助理生成对冲网络这样的团队竞争结构。
translated by 谷歌翻译